DEVELOPMENT AND IMPLEMENTATION OF AN AUTOMATIC MONKEY DETECTION AND REPELLENT SYSTEM TO ENHANCE AGRICULTURAL PRODUCTIVITY IN REMPANG CATE, BATAM

Authors

  • Fardin Hasibuan Universitas Riau Kepulauan
  • Muhammad Irsyam Universitas Riau Kepulauan
  • Toni Kusuma Wijaya Universitas Riau Kepulauan
  • Stiven Ewin Sianipar Universitas Riau Kepulauan
  • Edo ardiansyah Universitas Riau Kepulauan
  • Jumiati Ratuloli Universitas Riau Kepulauan
  • Yoga Parendi Universitas Riau Kepulauan

Keywords:

Convolutional Neural Network, Monyet, Panel Surya, Produksi Perkebunan, Raspberry Pi

Abstract

Monkey pest attacks pose a serious threat to agricultural productivity, particularly affecting the Tunas Baru Farmers Group. This study aims to implement appropriate technology to mitigate crop damage caused by these pests. The activity was conducted in Rempang Cate Ward from May to September 2025. The implementation method included field observation, system design (hardware and software), on-site installation, as well as monitoring and performance evaluation. The developed device utilizes a Convolutional Neural Network (CNN) with a Raspberry Pi microcontroller and a webcam to detect the presence of monkeys within a radius of up to 35 meters. Upon detection, the system automatically generates a gunshot sound audible up to a radius of 250 meters to repel the pests. Given that the partner's location lacks access to the PLN electricity grid, the device is powered by solar panels as a renewable energy source. The implementation results demonstrate a significant impact, marked by a reduction in crop damage from an average of nine trees to only three trees per attack incident. This reduction contributed to a 67% increase in production yield compared to the pre-installation period. This technology has proven to be a more effective and efficient solution than manual guarding methods and has the potential to be replicated in other areas to support food security and rural welfare.

Author Biographies

Fardin Hasibuan, Universitas Riau Kepulauan

Program Studi Teknik Mesin

Muhammad Irsyam, Universitas Riau Kepulauan

Program Studi Teknik Elektro

Toni Kusuma Wijaya, Universitas Riau Kepulauan

Program Studi Teknik Elektro

Stiven Ewin Sianipar, Universitas Riau Kepulauan

Program Studi Teknik Mesin

Edo ardiansyah, Universitas Riau Kepulauan

Program Studi Teknik Mesin

Jumiati Ratuloli, Universitas Riau Kepulauan

Program Studi Teknik Mesin

Yoga Parendi, Universitas Riau Kepulauan

Program Studi Teknik Mesin

References

Ajeet Singh et.al. (2014). Design of Tracking of Moving Target Using PID Controller. http://www.ijettjournal.org

Ardiansyah, A. (2019). Perancangan Alat Pendeteksi Hewan Pengganggu Tanaman Kebun Menggunakan Sensor Gerak PIR (Passive Infra Red) Berbasis Mikrokontroler.

https://api.semanticscholar.org/CorpusID:204185262

Ariawan, I. (2022). klasifikasi tiga genus ikan karang menggunakan convolution neural network. Jurnal Ilmu Dan Teknologi Kelautan Tropis. https://api.semanticscholar.org/CorpusID:252560611

Badan Pusat Statistik Kota Batam. (2024). Kota Batam Dalam Angka 2024.

Ghulam, Z. (2021). Pendampingan Pembentukan Komunits Pecinta Alam sebagai Solusi Pencegahan Hama Monyet di Desa Sarikemuning Kecamatan Senduro Kabupaten Lumajang. Khidmatuna : Jurnal Pengabdian Masyarakat. https://api.semanticscholar.org/CorpusID:247368087

google Maps. (2024). Google Maps.

https://www.google.com/maps/@0.4704397,103.4676757,8.96z?entry=ttu&g_ep=EgoyMDI0MTAwOS4wIKXMDSoASAFQAw%3D%3D

Hasibuan, F. (2019). Perancangan Pemasangan Pompa Air Bersumber Listrik Tenaga Matahari Di Persawahan. DIMENSI, 8(3), 637–653.

Hasibuan, F., Akramunnas, B. W., & Widagdo, T. (2023). Perancangan Mesin Es Balok Bersumber Listrik Tenaga Matahari Di Desa Muntai Kabupaten Bengkalis. Sigma Teknika, 6(2), 448–458.

Hasibuan, F., & Barisqy, I. N. (2023). Designing Solar-Driven Electric Water Pump System for Irrigating The Rice Fields in Siraisan Village. IJEERE: Indonesian Journal of Electrical Engineering and Renewable Energy vol. 3, 124–135. https://doi.org/10.57152/ijeere.v3i1

Hasibuan, F., Kurniawan, H., Irsyam, M., Syaputra, M. L., Supriadi, Delpero, M. A., & Fernando, W. (2024). Teknologi pertanian cerdas: Alat pengusir monyet otomatis untuk mendukung produktivitas petani.

Mushawwir, L. A. (2015). Deteksi dan Tracking Objek untuk Sistem Pengawasan Citra Bergerak.

Nugraha, A. R., Utaminingrum, F., & Fitriyah, H. (2021). Sistem Deteksi Hama Babi menggunakan CNN (Convolutional Neural Network) berbasis Raspberry Pi (Vol. 5, Issue 9). http://j-ptiik.ub.ac.id

Rahmadani, I., Muqimuddin, M., Hertadi, C. D. P., & Nugroho, B. (2023). Klasifikasi Kualitas Hasil Produksi Tahu Putih Menggunakan Metode Convolutional Neural Network. Sebatik. https://api.semanticscholar.org/CorpusID:270947544

Rahmat, S., & Yanti, F. (2022). Alat Pendeteksi Keberdaan Manusia Otomatis Berbasis Mikrokontroler Arduino Uno Dengan Menggunakan Sensor PIR (Passive Infrared). In Scientia Sacra: Jurnal Sains (Vol. 2, Issue 3). http://pijarpemikiran.com/index.php/Scientia

Shirgeri, M. S., Pallavi, M., Naik, U., Udupi, G. R., & Bidkar, G. A. (2013). Design and Development of Optical Flow Based Moving Object Detection and Tracking (omodt) System. https://api.semanticscholar.org/CorpusID:8471769

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1874–1883. https://api.semanticscholar.org/CorpusID:7037846

Suhanda, A. I. S., Iskandar, B. S., & Iskandar, J. (2020). Etnozologi Pengetahuan Lokal Masyarakat Palintang, Desa Panjalu, Kecamatan Cilengkrang, Kabupaten Bandung Tentang Perburuan Bagong Dan Monyet Sebagai Hama Pertanian. https://api.semanticscholar.org/CorpusID:234534163

Suwitono, Y. A., & Kaunang, F. J. (2022). Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras. Jurnal Komtika (Komputasi Dan Informatika). https://api.semanticscholar.org/CorpusID:254756984

Yu, T., Yin, H., & Zhu, Z. (2017). Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting. ArXiv, abs/1709.04875. https://api.semanticscholar.org/CorpusID:4972291

Published

2025-12-31