DECODING SYMBOLISM IN STATISTICAL MODELING: AN EXPLORATION OF STRUCTURAL EQUATION MODELING AND DESCRIPTIVE ANALYSIS
Abstract
Full Text:
PDFReferences
Byrne, B. M. (2016). Structural Equation Modeling With AMOS 3rd Edition: Basic Concepts, Applications, and Programming, Third Edition. New York: Routledge.
Chitladaporn, P., & Kanchanawongpaisan, S. (2024). A Comprehensive Review of A Beginner’s Guide to Structural Equation Modeling: Enhancing Accessibility for New Researchers. Multidisciplinary Journal of Shinawatra University, 1(3), 14–21.
Fisher, R. (1992). Statistical Methods for Research Workers. In S. Kotz, & N. Johnson, Breakthroughs in Statistics. Springer Series in Statistics (pp. 66–70). New York, NY.: Springer. doi:https://doi.org/10.1007/978-1-4612-4380-9_6
Hair, J. F., G. Tomas, H. M., Ringle , C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Sprinker.
Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS Explained. London: Routledge.
Jöreskog, K. G. (1970). A general method for estimating a linear structural equation system. In A. Goldberger, & O. Duncan , Structural equation models in the social sciences (pp. 85–112). Seminar Press.
Kanchanawongpaisan, S. (2024). Navigating the Future of Quantitative Research: The Power of StructuralEquation Modeling. Multidisciplinary Journal of Shinawatra University, 1(3), 1–13.
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Publications.
Pearson, K. (1985). Contributions to the Mathematical Theory of Evolution, II: Skew Variation in Homogeneous Material. Philosophical Transactions of the Royal Society, 186, 343–414. doi:https://doi.org/10.1098/rsta.1895.0010
Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research, 20(3), 557–585.
Refbacks
- There are currently no refbacks.