EVALUASI PERAMALAN PERMINTAAN PRODUK KOPI BUBUK MENGGUNAKAN PENDEKATAN TIME SERIES DI UKM EYANG KAKUNG - GRESIK

Seftian Amiludin, Nina Aini Mahbubah

Abstract


Accuracy is a key point to minimize extra goods. This research aims in evaluating goods demand in a small to medium-sized enterprise. Time series was used as a research approach. The data used in this research is the demand data for powdered coffee within and outside the city for one year. This resurch begun with data collection, analysis, and finally forecasting stage using the time series method. The analysis results show that the demand data for Eyang Kakung powdered coffee SMEs has a horizontal data pattern. The time series method used is moving averages and exponential smoothing according to the data pattern classification. After forecasting, the results show MAD=56.59, MSE=4676.52, and MAPE=10.74% for demand within the city and MAD=24.34, MSE=969.46, and MAPE=4.65% for demand outside the city. Based on the forecasting results, it can be concluded that the time series method can be used as a tool to forecast demand for powdered coffee within and outside the city. By using exponential smoothing with α=0.5, it can help SMEs make decisions in preparing raw material stocks and improving production efficiency.


Keywords


forecast, time-series, data-pattern, moving-average, exponential-smoothing

Full Text:

PDF

References


E. Asynari, D. Wahyudi, and Q. Aeni, “ANALISIS PERAMALAN PERMINTAAN PADA GEPREK BENSU MENGGUNAKAN METODE TIME SERIES,” vol. 3, pp. 2407–1811, 2020, doi: 10.33330/jurteksi.v6i3.424.

I. Meiza Maharani and A. Fauzan, “Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins,” vol. 16, no. 2, pp. 162–173, 2020, doi: 10.20956/jmsk.v%vi%i.7795.

Sambas Sundana and D. Z. Al Gufronny, “USULAN PERMINTAAN PRODUK SN 5 ML DI PT. XYZ DENGAN METODE TIME SERIES,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 8, no. 2, pp. 117–122, Jul. 2021, doi: 10.37373/tekno.v8i2.112.

N. Azahra, S. C. Alifia, N. P. Andyka, S. Wijayanto, and M. Y. Fathoni, “Peramalan Jumlah Produksi Tebu Menggunakan Metode Time Series Model Moving Averages,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 840, Aug. 2022, doi: 10.30865/jurikom.v9i4.4388.

M. Ryfqie, A. Rozaq, and N. A. Mahbubah, “EFISIENSI PERSEDIAAN KANTONG SEMEN BERBASIS METODE MIN-MAX, EOQ, DAN TWO-BIN DI PACKING PLANT PT AKA,” Sigma Teknika, vol. 5, no. 2, pp. 259–266.

M. W. Rini and N. Ananda, “Perbandingan Metode Peramalan Menggunakan Model Time Series,” Tekinfo: Jurnal Ilmiah Teknik Industri dan Informasi, vol. 10, no. 2, pp. 88–101, May 2022, doi: 10.31001/tekinfo.v10i2.1419.

L. A. Anbar and W. Wahyudin, “Peramalan permintaan tas laptop menggunakan model time series,” Journal Industrial Services, vol. 7, no. 2, p. 285, Apr. 2022, doi: 10.36055/jiss.v7i2.14326.

F. Oktiandar, M. Rafiqi, M. A. Ridiya, and N. Fatayat, “Analisa Peramalan Permintaan Mobil Daihatsu Dengan Metode Time Series,” Jurnal Teknik Mesin Unsyiah, vol. 8, no. 2, 2020.

N. Aprilianti, I. Setiawan, and N. Yusuf, “PERAMALAN PERMINTAAN PRODUK SALE PISANG PADA INDUSTRI ‘SAHABAT’ DI DUSUN CIJOHO DESA MARGAJAYA KECAMATAN SUKADANA KABUPATEN CIAMIS FORECASTING DEMAND FOR SALE BANANA PRODUCTS IN THE ‘SAHABAT’ INDUSTRY IN CIJOHO HAMLET, MARGAJAYA VILLAGE, SUKADANA SUBDISTRICT, CIAMIS DISTRICTS.”

“ANALISA PERENCANAAN PERSEDIAAN BAHAN PRODUKSI DALAM UMKM”.

E. Yacoba Nugraha and W. Suletra, “Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik,” 2017.

Anna Nita Kusumawati, Muhammad Ghofur, Mega Anggraeni Putri, Zaki Abdullah Alfatah, and Mu’adzah, “Peramalan Permintaan Menggunakan Time Series Forecasting Model Untuk Merancang Resources Yang Dibutuhkan IKM Percetakan,” JENIUS : Jurnal Terapan Teknik Industri, vol. 2, no. 2, pp. 105–115, Nov. 2021, doi: 10.37373/jenius.v2i2.159.

P. Al Zukri, S. Nurina Widyaningrum, Q. Aini, S. Informasi, and S. dan Teknologi, “FORECASTING PERMINTAAN POMPA AIR DANGKAL SHIMIZU MENGGUNAKAN METODE TIME SERIES.”

Z. Mardhiyah1, R. Aurachman, P. Giri, and A. Kusuma, “PENENTUAN JUMLAH PERENCANAAN PERMINTAAN TERHADAP PRODUK AQUA DENGAN METODE PERAMALAN TIME SERIES (STUDI KASUS PADA PT TIRTA INVESTAMA BANDUNG) DETERMINATION OF TOTAL DEMAND PLANNING AQUA PRODUCTS USING TIME SERIES FORECASTING METHOD (CASE STUDY IN PT TIRTA INVESTAMA BANDUNG)”.

J. Hasil, P. Dan, K. Ilmiah, and M. Jufriyanto, “Peramalan Permintaan Keripik Singkong dengan Simulasi Monte Carlo Forecasting Demand for Cassava Chips with Monte Carlo Simulation,” 2020.

J. N. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” 2022.

A. Khamid1, D. F. Suyatno2, and S. Informasi, “Rancang Bangun Sistem Informasi Peramalan Penjualan pada Songkok Palapa Gresik dengan menggunakan Metode Time-Series Berbasis Website,” JEISBI, vol. 02, p. 2021.

A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X.”

D. Anisya Ramdani, dan Fahriza Nurul Azizah, S. H. Karawang Jl Ronggo Waluyo, K. Tim, and K. Karawang, “ANALISIS PERBANDINGAN PERAMALAN PERMINTAAN PELUMAS PT XYZ DENGAN METODE MOVING AVERAGE, EXPONENTIAL SMOOTHING DAN NAIVE METHOD.”

N. E. Chandra and S. A. Rohmaniah, “Perbandingan Metode Moving Average dan Single Exponential Smoothing pada Peramalan Inflasi Kota Purwokerto,” vol. 12, no. 1, pp. 49–55, 2022, doi: 10.24843/JMAT.2022.v12.i01.p148.




DOI: https://doi.org/10.33373/sigmateknika.v6i1.5289

Refbacks

  • There are currently no refbacks.





E-ISSN 2599-0616

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Sigma Teknika

Gedung Lt.1 Kampus Universitas Riau Kepulauan Batam

Jl. Batu Aji Baru No.99 Batu Aji

Email: sigmateknika@journal.unrika.ac.id

 

 

Web Analytics