ANALYSIS EFFECT OF THE PRIMARY PULLEY ANGLE OF SPORTY MOTORBIKE

Qomarotun Nurlaila, Agus Umar Ryadin, Dedi Yanto S

Abstract


The research aims to analyze the effect of the primary pulley slope angle on engine torque and fuel consumption of the Mio Sporty 115 CC motorbike. The inclination angle of the primary pulley based on factory standards is 14º. Changing the slope angle of the primary pulley using a lathe for angles of 12º, 13º and 13.5º. Testing was carried out using a dyno test machine, 3 data for each slope angle. The dyno test results consist of engine speed, torque, and power. Fuel consumption is obtained using calculations based on test data. Based on the analysis of test results and calculations, it is known that the slope angle of the primary pulley affects engine torque and fuel consumption of the Mio Sporty 115 CC motorbike. The 14º slope angle produces 6.35 torque, the 13.5º slope angle produces 6.47, the 13º slope angle produces 6.29 and the 12º slope angle produces 6.02. Meanwhile, for fuel consumption, slope angle 12º and 14º require fuel consumption of 0.19 l/hour, slope angle 13º & 13.5º require fuel consumption of 0.18 l/hour. Based on the highest torque and the lowest fuel consumption results, a slope angle of 13.5º is recommended.

Keywords


Primary Pulley, Slope Angle, Engine Torque, Fuel Consumption, Dyno Test

Full Text:

PDF

References


Simoes, A. A., S J Ferraro, J C Marrero, and D Martín de Diego. 2023. “A Nonholonomic Newmark Method.” Journal of Computational and Applied Mathematics 421. doi: 10.1016/j.cam.2022.114873.

Ardah, S., F. Profito, T. Reddyhoff, and D. Dini. 2023. “Advanced Modelling of Lubricated Interfaces in General Curvilinear Grids.” Tribology International 188. doi: 10.1016/j.triboint.2023.108727.

Boger, T., D. Rose, S. He, and A. Joshi. 2022. “Developments for Future EU7 Regulations and the Path to Zero Impact Emissions – A Catalyst Substrate and Filter Supplier’s Perspective.” Transportation Engineering 10. doi: 10.1016/j.treng.2022.100129.

Broekaert, S., T. Grigoratos, D. Savvidis, and G. Fontaras. 2021. “Assessment of Waste Heat Recovery for Heavy-Duty Vehicles during on-Road Operation.” Applied Thermal Engineering 191. doi: 10.1016/j.applthermaleng.2021.116891.

Dauphin, R., V. Prevost, P. Degeilh, J. Melgar, C. Fittavolini, A. Smith, C. Callu, S. Chrysafi, R. Uitz-Choi, and K. Kar. 2023. “Evaluation of Plug-in Hybrid Vehicles in Real-World Conditions by Simulation.” Transportation Research Part D: Transport and Environment 119. doi: 10.1016/j.trd.2023.103721.

Ilia, E., P. Plamondon, J. P. Masse, and G. L’Espérance. 2019. “Copper Precipitation at Engine Operating Temperatures in Powder-Forged Connecting Rods Manufactured with Fe–Cu–C Alloys.” Materials Science and Engineering: A 767. doi: 10.1016/j.msea.2019.138383.

Komnos, D., S. Tsiakmakis, J. Pavlovic, L. Ntziachristos, and G. Fontaras. 2022. “Analysing the Real-World Fuel and Energy Consumption of Conventional and Electric Cars in Europe.” Energy Conversion and Management 270. doi: 10.1016/j.enconman.2022.116161.

Mattetti, M, M Medici, M Canavari, and M Varani. 2022. “CANBUS-Enabled Activity-Based Costing for Leveraging Farm Management.” Computers and Electronics in Agriculture 194. doi: 10.1016/j.compag.2022.106792.

Nobaveh, A. A., J. L. Herder, and G. Radaelli. 2023. “A Compliant Continuously Variable Transmission (CVT).” Mechanism and Machine Theory 184. doi: 10.1016/j.mechmachtheory.2023.105281.

du Plessis, M., J. van Eeden, L. Goedhals-Gerber, and J. Else. 2023. “Calculating Fuel Usage and Emissions for Refrigerated Road Transport Using Real-World Data.” Transportation Research Part D: Transport and Environment 117. doi: 10.1016/j.trd.2023.103623.

Rossetti, A, and A Macor. 2018. “Control Strategies for a Powertrain with Hydromechanical Transmission.” Pp. 978–85 in Energy Procedia. Vol. 148. Elsevier Ltd.

Tsiakmakis, S., G. Fontaras, J. Dornoff, V. Valverde, D. Komnos, B. Ciuffo, P. Mock, and Z. Samaras. 2019. “From Lab-to-Road & Vice-Versa: Using a Simulation-Based Approach for Predicting Real-World CO2 Emissions.” Energy 169:1153–65. doi: 10.1016/j.energy.2018.12.063.

Tsokanas, N., R. Pastorino, and B. Stojadinović. 2022. “Adaptive Model Predictive Control for Actuation Dynamics Compensation in Real-Time Hybrid Simulation.” Mechanism and Machine Theory 172. doi: 10.1016/j.mechmachtheory.2022.104817.

Weber, C., I. Sundvor, and E. Figenbaum. 2019. “Comparison of Regulated Emission Factors of Euro 6 LDV in Nordic Temperatures and Cold Start Conditions: Diesel- and Gasoline Direct-Injection.” Atmospheric Environment 206:208–17. doi: 10.1016/j.atmosenv.2019.02.031.

Yang, Zhuoqian, James Tate, Eleonora Morganti, Ian Philips, and Simon Shepherd. 2023. “How Accelerating the Electrification of the van Sector in Great Britain Can Deliver Faster CO2 and NOx Reductions.” Sustainable Cities and Society 88. doi: 10.1016/j.scs.2022.104300.

Zhang, M., Y. Ge, X. Wang, D. Thomas, S. Su, and H. Li. 2020. “An Assessment of How Bio-E10 Will Impact the Vehicle-Related Ozone Contamination in China.” Energy Reports 6:572–81. doi: 10.1016/j.egyr.2020.02.036.




DOI: https://doi.org/10.33373/sigmateknika.v7i2.6215

Refbacks

  • There are currently no refbacks.





E-ISSN 2599-0616

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Sigma Teknika

Gedung Lt.1 Kampus Universitas Riau Kepulauan Batam

Jl. Batu Aji Baru No.99 Batu Aji

Email: sigmateknika@journal.unrika.ac.id

 

 

Web Analytics