ANALISIS DAMPAK PENGGUNAAN BETON SEBAGAI BAHAN BANGUNAN UTAMA UNTUK MEMITIGASI PEMANASAN GLOBAL MELALUI STRATEGI ARSITEKTUR

Abstract

Beton merupakan material utama dalam konstruksi modern karena kekuatan struktural, daya tahan tinggi, dan kemudahan produksi. Namun, produksi semen sebagai bahan dasar beton menghasilkan emisi karbon dioksida (CO₂) yang cukup besar, berkontribusi terhadap pemanasan global. Penelitian ini menggunakan pendekatan kualitatif melalui studi literatur mendalam dan wawancara dengan pakar arsitektur berkelanjutan untuk mengeksplorasi hubungan antara penggunaan beton dan dampaknya terhadap lingkungan. Fokus utama adalah mengidentifikasi alternatif material dan strategi desain yang lebih ramah lingkungan tanpa mengorbankan kualitas bangunan. Salah satu solusi yang dikaji adalah penggunaan beton geopolimer yang mampu menurunkan emisi karbon secara signifikan. Selain itu, penerapan desain bioklimatik seperti orientasi bangunan, ventilasi alami, pencahayaan pasif, dan integrasi lanskap dapat mengurangi konsumsi energi operasional. Hasil penelitian menunjukkan bahwa kombinasi kedua pendekatan tersebut efektif dalam menekan dampak lingkungan dan mendukung prinsip arsitektur berkelanjutan yang adaptif terhadap kondisi iklim lokal.

Author Biographies

Stivani Ayuning Suwarlan, Universitas Internasional Batam
Program Studi Arsitektur, Universitas Internasional Batam
Antonius Aaron Inkiriwang, Universitas Internasional Batam
Mahasiswa Sarjana Arsitektur Universitas Internasional Batam
Lathifa Nusyamsu, Universitas Internasional Batam
Dosen Prodi Arsitektur Universitas Internasional Batam

References

[1] M. Mustafa, “Peran Desain Permukiman Dalam Membangun Ketahanan Terhadap Perubahan Iklim,” J. Cahaya Mandalika, vol. 5, no. 2, pp. 587–600, 2024.
[2] International Energy Agency, Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57): Overview of Annex 57 Results. Tokyo: Institute for Building Environment and Energy Conservation, 2016.
[3] Intergovernmental Panel on Climate Change, Climate Change 2018: Global Warming of 1.5°C. Cambridge: Cambridge University Press, 2018.
[4] K. N. Shivaprasad, H.-M. Yang, and J. K. Singh, “A path to carbon neutrality in construction: An overview of recent progress in recycled cement usage,” J. CO2 Util., vol. 83, 2024. doi: 10.1016/j.jcou.2024.102816.
[5] Pemerintah Indonesia, Undang-Undang No. 32 Tahun 2009 Tentang Perlindungan dan Pengelolaan Lingkungan Hidup. Jakarta: Pemerintah Indonesia, 2009.
[6] G. Habert, S. A. Miller, V. M. John et al., “Environmental impacts and decarbonization strategies in the cement and concrete industries,” Nat. Rev. Earth Environ., vol. 1, pp. 559–573, 2020. doi: 10.1038/s43017-020-0093-3.
[7] O. E. Ige, D. V. Von Kallon, and D. Desai, “Carbon emissions mitigation methods for cement industry using a systems dynamics model,” Clean Techn. Environ. Policy, vol. 26, pp. 579–597, 2024. doi: 10.1007/s10098-023-02683-0.
[8] H. Lee, A. Hanif, M. Usman, J. Sim, and H. Oh, “Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material,” J. Cleaner Prod., vol. 170, pp. 683–693, 2018. doi: 10.1016/j.jclepro.2017.09.133.
[9] Ramdhani and Sugini, “Sustainable Architectural Investigations on Bugis Vernacular House: Case Study of Tenun Tourism Village, Samarinda Seberang, East Kalimantan, Indonesia,” IOP Conf. Ser.: Earth Environ. Sci., vol. 933, 2021. doi: 10.1088/1755-1315/933/1/012020.
[10] T. Naik, “Sustainability of Concrete Construction,” Practice Period. Struct. Des. Constr., vol. 13, no. 2, 2008. doi: 10.1061/(ASCE)1084-0680(2008)13:2(98).
[11] H. S. Müller, R. Breiner, J. S. Moffatt, and M. Haist, “Design and Properties of Sustainable Concrete,” Procedia Eng., vol. 95, pp. 290–304, 2014. doi: 10.1016/j.proeng.2014.12.189.
[12] V. S. Reddy, “Sustainable Construction: Analysis of Its Costs and Financial Benefits,” Int. J. Innov. Res. Eng. Manage. (IJIREM), vol. 3, no. 6, 2016. doi: 10.21276/ijirem.2016.3.6.12.
[13] N. Tan, S. A. Suwarlan, and C. D. Aguspriyanti, “Peningkatan Kenyamanan Termal Sekolah di Iklim Tropis Pesisir Melalui Konsep Bioclimatic Architecture,” J. Archit. Des. Dev., vol. 4, no. 2, pp. 146–156, 2023.
[14] Fahri and Satwikasari, “Kajian Konsep Arsitektur Bioklimatik pada Bangunan Punggol Waterway Terrace, Singapura,” Agora J. Penelit. dan Karya Ilm. Arsit. Usakti, vol. 20, no. 2, pp. 258–272, 2022. doi: 10.25105/agora.v20i2.13681.
[15] I. A. G. Tumimomor and H. Poli, “Arsitektur Bioklimatik,” Media Matrasain, vol. 8, no. 1, 2011.
[16] S. S. Mulyadi, Resort di Pantai Srandakan, Bantul Penerapan Konsep Desain Arsitektur Bioklimatik, 2017.
[17] Mukhtar, Metode Penelitian Deskriptif Kualitatif. Jakarta: GP Press Group, 2013.
[18] S. Althoey et al., “Advancements in low-carbon concrete as a construction material for the sustainable built environment,” Develop. Built Environ., vol. 16, 2023. doi: 10.1016/j.dibe.2023.100284.
[19] D. K. Nayak, P. P. Abhilash, R. Singh, R. Kumar, and V. Kumar, “Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies,” Cleaner Mater., vol. 6, 2022. doi: 10.1016/j.clema.2022.100143.
[20] Z. F. Akbulut, D. Yavuz, T. A. Tawfik, P. Smarzewski, and S. Guler, “Enhancing Concrete Performance through Sustainable Utilization of Class-C and Class-F Fly Ash: A Comprehensive Review,” Sustainability, vol. 16, no. 12, 2024. doi: 10.3390/su16124905.
[21] D. Davidovits, “Geopolymer Cement: A Review,” Geopolymer Sci. Technics, Tech. Paper #21, 2013. [Online]. Available: www.geopolymer.org
[22] Y. Chen et al., “Co-optimization of passive building and active solar heating system based on the objective of minimum carbon emissions,” Energy, vol. 275, 2023. doi: 10.1016/j.energy.2023.127401.
[23] Z. A. Ali, “Evaluasi Penerapan 8 Atribut Kota Hijau Pada Ruang Umum Studi Kasus Islamic Center Kabupaten Tulang Bawang Barat,” J. Profesi Insinyur Univ. Lampung, vol. 3, no. 2, pp. 55–62, 2022.
[24] S. Franciska, I. G. N. A. Gunawan, and S. A. Suwarlan, “Analisis Efisiensi Energi Gedung Gereja House Of Glory Berdasarkan Penerapan Arsitektur Hijau,” J. Archit. Des. Dev., vol. 5, no. 2, pp. 219–230, 2024.
[25] Y. S. Kawuwung, S. Savitrinishintianatali, and Purwanto, “Struktur Atap Green Dengan Teknologi Ramah Lingkungan,” KOLABORASI J. Arsit., vol. 3, no. 1, 2023. doi: 10.54325/kolaborasi.v3i1.35.
[26] C. Popescu, M. Dissanayake, and Stancu, “Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet,” Sustainability, vol. 16, no. 10790, 2024. doi: 10.3390/su162310790.
[27] D. Hardjito, Beton Geopolimer Berbahan Dasar Abu Terbang. Surabaya: Petra Press, 2017.
Published
2025-11-28
How to Cite
SUWARLAN, Stivani Ayuning; INKIRIWANG, Antonius Aaron; NUSYAMSU, Lathifa. ANALISIS DAMPAK PENGGUNAAN BETON SEBAGAI BAHAN BANGUNAN UTAMA UNTUK MEMITIGASI PEMANASAN GLOBAL MELALUI STRATEGI ARSITEKTUR. SIGMA TEKNIKA, [S.l.], v. 8, n. 2, p. 422-431, nov. 2025. ISSN 2599-0616. Available at: <https://journal.unrika.ac.id/index.php/sigmateknika/article/view/8017>. Date accessed: 11 feb. 2026. doi: https://doi.org/10.33373/sigmateknika.v8i2.8017.

Keywords

Beton, Urbanisasi, Pemanasan Global, Arsitektur Berkelanjutan, Emisi Karbon.